Metamath Proof Explorer


Theorem linindsi

Description: The implications of being a linearly independent subset. (Contributed by AV, 13-Apr-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Hypotheses islininds.b
|- B = ( Base ` M )
islininds.z
|- Z = ( 0g ` M )
islininds.r
|- R = ( Scalar ` M )
islininds.e
|- E = ( Base ` R )
islininds.0
|- .0. = ( 0g ` R )
Assertion linindsi
|- ( S linIndS M -> ( S e. ~P B /\ A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) ) )

Proof

Step Hyp Ref Expression
1 islininds.b
 |-  B = ( Base ` M )
2 islininds.z
 |-  Z = ( 0g ` M )
3 islininds.r
 |-  R = ( Scalar ` M )
4 islininds.e
 |-  E = ( Base ` R )
5 islininds.0
 |-  .0. = ( 0g ` R )
6 linindsv
 |-  ( S linIndS M -> ( S e. _V /\ M e. _V ) )
7 1 2 3 4 5 islininds
 |-  ( ( S e. _V /\ M e. _V ) -> ( S linIndS M <-> ( S e. ~P B /\ A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) ) ) )
8 6 7 syl
 |-  ( S linIndS M -> ( S linIndS M <-> ( S e. ~P B /\ A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) ) ) )
9 8 ibi
 |-  ( S linIndS M -> ( S e. ~P B /\ A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) ) )