Step |
Hyp |
Ref |
Expression |
1 |
|
islininds.b |
|- B = ( Base ` M ) |
2 |
|
islininds.z |
|- Z = ( 0g ` M ) |
3 |
|
islininds.r |
|- R = ( Scalar ` M ) |
4 |
|
islininds.e |
|- E = ( Base ` R ) |
5 |
|
islininds.0 |
|- .0. = ( 0g ` R ) |
6 |
1 2 3 4 5
|
linindsi |
|- ( S linIndS M -> ( S e. ~P B /\ A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) ) ) |
7 |
|
breq1 |
|- ( f = F -> ( f finSupp .0. <-> F finSupp .0. ) ) |
8 |
|
oveq1 |
|- ( f = F -> ( f ( linC ` M ) S ) = ( F ( linC ` M ) S ) ) |
9 |
8
|
eqeq1d |
|- ( f = F -> ( ( f ( linC ` M ) S ) = Z <-> ( F ( linC ` M ) S ) = Z ) ) |
10 |
7 9
|
anbi12d |
|- ( f = F -> ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) <-> ( F finSupp .0. /\ ( F ( linC ` M ) S ) = Z ) ) ) |
11 |
|
fveq1 |
|- ( f = F -> ( f ` x ) = ( F ` x ) ) |
12 |
11
|
eqeq1d |
|- ( f = F -> ( ( f ` x ) = .0. <-> ( F ` x ) = .0. ) ) |
13 |
12
|
ralbidv |
|- ( f = F -> ( A. x e. S ( f ` x ) = .0. <-> A. x e. S ( F ` x ) = .0. ) ) |
14 |
10 13
|
imbi12d |
|- ( f = F -> ( ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) <-> ( ( F finSupp .0. /\ ( F ( linC ` M ) S ) = Z ) -> A. x e. S ( F ` x ) = .0. ) ) ) |
15 |
14
|
rspcv |
|- ( F e. ( E ^m S ) -> ( A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) -> ( ( F finSupp .0. /\ ( F ( linC ` M ) S ) = Z ) -> A. x e. S ( F ` x ) = .0. ) ) ) |
16 |
15
|
com23 |
|- ( F e. ( E ^m S ) -> ( ( F finSupp .0. /\ ( F ( linC ` M ) S ) = Z ) -> ( A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) -> A. x e. S ( F ` x ) = .0. ) ) ) |
17 |
16
|
3impib |
|- ( ( F e. ( E ^m S ) /\ F finSupp .0. /\ ( F ( linC ` M ) S ) = Z ) -> ( A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) -> A. x e. S ( F ` x ) = .0. ) ) |
18 |
17
|
com12 |
|- ( A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) -> ( ( F e. ( E ^m S ) /\ F finSupp .0. /\ ( F ( linC ` M ) S ) = Z ) -> A. x e. S ( F ` x ) = .0. ) ) |
19 |
6 18
|
simpl2im |
|- ( S linIndS M -> ( ( F e. ( E ^m S ) /\ F finSupp .0. /\ ( F ( linC ` M ) S ) = Z ) -> A. x e. S ( F ` x ) = .0. ) ) |
20 |
19
|
imp |
|- ( ( S linIndS M /\ ( F e. ( E ^m S ) /\ F finSupp .0. /\ ( F ( linC ` M ) S ) = Z ) ) -> A. x e. S ( F ` x ) = .0. ) |