Metamath Proof Explorer


Theorem linindslinci

Description: The implications of being a linearly independent subset and a linear combination of this subset being 0. (Contributed by AV, 24-Apr-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Hypotheses islininds.b 𝐵 = ( Base ‘ 𝑀 )
islininds.z 𝑍 = ( 0g𝑀 )
islininds.r 𝑅 = ( Scalar ‘ 𝑀 )
islininds.e 𝐸 = ( Base ‘ 𝑅 )
islininds.0 0 = ( 0g𝑅 )
Assertion linindslinci ( ( 𝑆 linIndS 𝑀 ∧ ( 𝐹 ∈ ( 𝐸m 𝑆 ) ∧ 𝐹 finSupp 0 ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ) → ∀ 𝑥𝑆 ( 𝐹𝑥 ) = 0 )

Proof

Step Hyp Ref Expression
1 islininds.b 𝐵 = ( Base ‘ 𝑀 )
2 islininds.z 𝑍 = ( 0g𝑀 )
3 islininds.r 𝑅 = ( Scalar ‘ 𝑀 )
4 islininds.e 𝐸 = ( Base ‘ 𝑅 )
5 islininds.0 0 = ( 0g𝑅 )
6 1 2 3 4 5 linindsi ( 𝑆 linIndS 𝑀 → ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ) )
7 breq1 ( 𝑓 = 𝐹 → ( 𝑓 finSupp 0𝐹 finSupp 0 ) )
8 oveq1 ( 𝑓 = 𝐹 → ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) )
9 8 eqeq1d ( 𝑓 = 𝐹 → ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ↔ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) )
10 7 9 anbi12d ( 𝑓 = 𝐹 → ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ↔ ( 𝐹 finSupp 0 ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ) )
11 fveq1 ( 𝑓 = 𝐹 → ( 𝑓𝑥 ) = ( 𝐹𝑥 ) )
12 11 eqeq1d ( 𝑓 = 𝐹 → ( ( 𝑓𝑥 ) = 0 ↔ ( 𝐹𝑥 ) = 0 ) )
13 12 ralbidv ( 𝑓 = 𝐹 → ( ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ↔ ∀ 𝑥𝑆 ( 𝐹𝑥 ) = 0 ) )
14 10 13 imbi12d ( 𝑓 = 𝐹 → ( ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ↔ ( ( 𝐹 finSupp 0 ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥𝑆 ( 𝐹𝑥 ) = 0 ) ) )
15 14 rspcv ( 𝐹 ∈ ( 𝐸m 𝑆 ) → ( ∀ 𝑓 ∈ ( 𝐸m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) → ( ( 𝐹 finSupp 0 ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥𝑆 ( 𝐹𝑥 ) = 0 ) ) )
16 15 com23 ( 𝐹 ∈ ( 𝐸m 𝑆 ) → ( ( 𝐹 finSupp 0 ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ( ∀ 𝑓 ∈ ( 𝐸m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) → ∀ 𝑥𝑆 ( 𝐹𝑥 ) = 0 ) ) )
17 16 3impib ( ( 𝐹 ∈ ( 𝐸m 𝑆 ) ∧ 𝐹 finSupp 0 ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ( ∀ 𝑓 ∈ ( 𝐸m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) → ∀ 𝑥𝑆 ( 𝐹𝑥 ) = 0 ) )
18 17 com12 ( ∀ 𝑓 ∈ ( 𝐸m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) → ( ( 𝐹 ∈ ( 𝐸m 𝑆 ) ∧ 𝐹 finSupp 0 ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥𝑆 ( 𝐹𝑥 ) = 0 ) )
19 6 18 simpl2im ( 𝑆 linIndS 𝑀 → ( ( 𝐹 ∈ ( 𝐸m 𝑆 ) ∧ 𝐹 finSupp 0 ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥𝑆 ( 𝐹𝑥 ) = 0 ) )
20 19 imp ( ( 𝑆 linIndS 𝑀 ∧ ( 𝐹 ∈ ( 𝐸m 𝑆 ) ∧ 𝐹 finSupp 0 ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ) → ∀ 𝑥𝑆 ( 𝐹𝑥 ) = 0 )