Step |
Hyp |
Ref |
Expression |
1 |
|
islininds.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
islininds.z |
⊢ 𝑍 = ( 0g ‘ 𝑀 ) |
3 |
|
islininds.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
4 |
|
islininds.e |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
5 |
|
islininds.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
6 |
1 2 3 4 5
|
linindsi |
⊢ ( 𝑆 linIndS 𝑀 → ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
7 |
|
breq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 finSupp 0 ↔ 𝐹 finSupp 0 ) ) |
8 |
|
oveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ↔ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ) |
10 |
7 9
|
anbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ↔ ( 𝐹 finSupp 0 ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ) ) |
11 |
|
fveq1 |
⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
12 |
11
|
eqeq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) = 0 ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
13 |
12
|
ralbidv |
⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ↔ ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
14 |
10 13
|
imbi12d |
⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ↔ ( ( 𝐹 finSupp 0 ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) |
15 |
14
|
rspcv |
⊢ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) → ( ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) → ( ( 𝐹 finSupp 0 ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) |
16 |
15
|
com23 |
⊢ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) → ( ( 𝐹 finSupp 0 ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ( ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) → ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) = 0 ) ) ) |
17 |
16
|
3impib |
⊢ ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ 𝐹 finSupp 0 ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ( ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) → ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
18 |
17
|
com12 |
⊢ ( ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) → ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ 𝐹 finSupp 0 ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
19 |
6 18
|
simpl2im |
⊢ ( 𝑆 linIndS 𝑀 → ( ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ 𝐹 finSupp 0 ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) = 0 ) ) |
20 |
19
|
imp |
⊢ ( ( 𝑆 linIndS 𝑀 ∧ ( 𝐹 ∈ ( 𝐸 ↑m 𝑆 ) ∧ 𝐹 finSupp 0 ∧ ( 𝐹 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ) → ∀ 𝑥 ∈ 𝑆 ( 𝐹 ‘ 𝑥 ) = 0 ) |