Metamath Proof Explorer


Theorem islinindfis

Description: The property of being a linearly independent finite subset. (Contributed by AV, 27-Apr-2019)

Ref Expression
Hypotheses islininds.b 𝐵 = ( Base ‘ 𝑀 )
islininds.z 𝑍 = ( 0g𝑀 )
islininds.r 𝑅 = ( Scalar ‘ 𝑀 )
islininds.e 𝐸 = ( Base ‘ 𝑅 )
islininds.0 0 = ( 0g𝑅 )
Assertion islinindfis ( ( 𝑆 ∈ Fin ∧ 𝑀𝑊 ) → ( 𝑆 linIndS 𝑀 ↔ ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸m 𝑆 ) ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ) ) )

Proof

Step Hyp Ref Expression
1 islininds.b 𝐵 = ( Base ‘ 𝑀 )
2 islininds.z 𝑍 = ( 0g𝑀 )
3 islininds.r 𝑅 = ( Scalar ‘ 𝑀 )
4 islininds.e 𝐸 = ( Base ‘ 𝑅 )
5 islininds.0 0 = ( 0g𝑅 )
6 1 2 3 4 5 islininds ( ( 𝑆 ∈ Fin ∧ 𝑀𝑊 ) → ( 𝑆 linIndS 𝑀 ↔ ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ) ) )
7 pm4.79 ( ( ( 𝑓 finSupp 0 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ∨ ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ) ↔ ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) )
8 elmapi ( 𝑓 ∈ ( 𝐸m 𝑆 ) → 𝑓 : 𝑆𝐸 )
9 8 adantl ( ( ( 𝑆 ∈ Fin ∧ 𝑀𝑊 ) ∧ 𝑓 ∈ ( 𝐸m 𝑆 ) ) → 𝑓 : 𝑆𝐸 )
10 simpll ( ( ( 𝑆 ∈ Fin ∧ 𝑀𝑊 ) ∧ 𝑓 ∈ ( 𝐸m 𝑆 ) ) → 𝑆 ∈ Fin )
11 5 fvexi 0 ∈ V
12 11 a1i ( ( ( 𝑆 ∈ Fin ∧ 𝑀𝑊 ) ∧ 𝑓 ∈ ( 𝐸m 𝑆 ) ) → 0 ∈ V )
13 9 10 12 fdmfifsupp ( ( ( 𝑆 ∈ Fin ∧ 𝑀𝑊 ) ∧ 𝑓 ∈ ( 𝐸m 𝑆 ) ) → 𝑓 finSupp 0 )
14 13 adantr ( ( ( ( 𝑆 ∈ Fin ∧ 𝑀𝑊 ) ∧ 𝑓 ∈ ( 𝐸m 𝑆 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → 𝑓 finSupp 0 )
15 14 imim1i ( ( 𝑓 finSupp 0 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) → ( ( ( ( 𝑆 ∈ Fin ∧ 𝑀𝑊 ) ∧ 𝑓 ∈ ( 𝐸m 𝑆 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) )
16 15 expd ( ( 𝑓 finSupp 0 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) → ( ( ( 𝑆 ∈ Fin ∧ 𝑀𝑊 ) ∧ 𝑓 ∈ ( 𝐸m 𝑆 ) ) → ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ) )
17 ax-1 ( ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) → ( ( ( 𝑆 ∈ Fin ∧ 𝑀𝑊 ) ∧ 𝑓 ∈ ( 𝐸m 𝑆 ) ) → ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ) )
18 16 17 jaoi ( ( ( 𝑓 finSupp 0 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ∨ ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ) → ( ( ( 𝑆 ∈ Fin ∧ 𝑀𝑊 ) ∧ 𝑓 ∈ ( 𝐸m 𝑆 ) ) → ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ) )
19 7 18 sylbir ( ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) → ( ( ( 𝑆 ∈ Fin ∧ 𝑀𝑊 ) ∧ 𝑓 ∈ ( 𝐸m 𝑆 ) ) → ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ) )
20 19 com12 ( ( ( 𝑆 ∈ Fin ∧ 𝑀𝑊 ) ∧ 𝑓 ∈ ( 𝐸m 𝑆 ) ) → ( ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) → ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ) )
21 pm3.42 ( ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) → ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) )
22 20 21 impbid1 ( ( ( 𝑆 ∈ Fin ∧ 𝑀𝑊 ) ∧ 𝑓 ∈ ( 𝐸m 𝑆 ) ) → ( ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ↔ ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ) )
23 22 ralbidva ( ( 𝑆 ∈ Fin ∧ 𝑀𝑊 ) → ( ∀ 𝑓 ∈ ( 𝐸m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ↔ ∀ 𝑓 ∈ ( 𝐸m 𝑆 ) ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ) )
24 23 anbi2d ( ( 𝑆 ∈ Fin ∧ 𝑀𝑊 ) → ( ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ) ↔ ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸m 𝑆 ) ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ) ) )
25 6 24 bitrd ( ( 𝑆 ∈ Fin ∧ 𝑀𝑊 ) → ( 𝑆 linIndS 𝑀 ↔ ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸m 𝑆 ) ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ) ) )