Step |
Hyp |
Ref |
Expression |
1 |
|
islininds.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
islininds.z |
⊢ 𝑍 = ( 0g ‘ 𝑀 ) |
3 |
|
islininds.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
4 |
|
islininds.e |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
5 |
|
islininds.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
6 |
1 2 3 4 5
|
islininds |
⊢ ( ( 𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊 ) → ( 𝑆 linIndS 𝑀 ↔ ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ) |
7 |
|
pm4.79 |
⊢ ( ( ( 𝑓 finSupp 0 → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ∨ ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ↔ ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) |
8 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) → 𝑓 : 𝑆 ⟶ 𝐸 ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊 ) ∧ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ) → 𝑓 : 𝑆 ⟶ 𝐸 ) |
10 |
|
simpll |
⊢ ( ( ( 𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊 ) ∧ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ) → 𝑆 ∈ Fin ) |
11 |
5
|
fvexi |
⊢ 0 ∈ V |
12 |
11
|
a1i |
⊢ ( ( ( 𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊 ) ∧ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ) → 0 ∈ V ) |
13 |
9 10 12
|
fdmfifsupp |
⊢ ( ( ( 𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊 ) ∧ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ) → 𝑓 finSupp 0 ) |
14 |
13
|
adantr |
⊢ ( ( ( ( 𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊 ) ∧ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → 𝑓 finSupp 0 ) |
15 |
14
|
imim1i |
⊢ ( ( 𝑓 finSupp 0 → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) → ( ( ( ( 𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊 ) ∧ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) |
16 |
15
|
expd |
⊢ ( ( 𝑓 finSupp 0 → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) → ( ( ( 𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊 ) ∧ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ) → ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
17 |
|
ax-1 |
⊢ ( ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) → ( ( ( 𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊 ) ∧ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ) → ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
18 |
16 17
|
jaoi |
⊢ ( ( ( 𝑓 finSupp 0 → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ∨ ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) → ( ( ( 𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊 ) ∧ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ) → ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
19 |
7 18
|
sylbir |
⊢ ( ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) → ( ( ( 𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊 ) ∧ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ) → ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
20 |
19
|
com12 |
⊢ ( ( ( 𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊 ) ∧ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ) → ( ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) → ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
21 |
|
pm3.42 |
⊢ ( ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) → ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) |
22 |
20 21
|
impbid1 |
⊢ ( ( ( 𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊 ) ∧ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ) → ( ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ↔ ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
23 |
22
|
ralbidva |
⊢ ( ( 𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊 ) → ( ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ↔ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
24 |
23
|
anbi2d |
⊢ ( ( 𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊 ) → ( ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ↔ ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ) |
25 |
6 24
|
bitrd |
⊢ ( ( 𝑆 ∈ Fin ∧ 𝑀 ∈ 𝑊 ) → ( 𝑆 linIndS 𝑀 ↔ ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ) |