Metamath Proof Explorer


Theorem islinindfis

Description: The property of being a linearly independent finite subset. (Contributed by AV, 27-Apr-2019)

Ref Expression
Hypotheses islininds.b B=BaseM
islininds.z Z=0M
islininds.r R=ScalarM
islininds.e E=BaseR
islininds.0 0˙=0R
Assertion islinindfis SFinMWSlinIndSMS𝒫BfESflinCMS=ZxSfx=0˙

Proof

Step Hyp Ref Expression
1 islininds.b B=BaseM
2 islininds.z Z=0M
3 islininds.r R=ScalarM
4 islininds.e E=BaseR
5 islininds.0 0˙=0R
6 1 2 3 4 5 islininds SFinMWSlinIndSMS𝒫BfESfinSupp0˙fflinCMS=ZxSfx=0˙
7 pm4.79 finSupp0˙fxSfx=0˙flinCMS=ZxSfx=0˙finSupp0˙fflinCMS=ZxSfx=0˙
8 elmapi fESf:SE
9 8 adantl SFinMWfESf:SE
10 simpll SFinMWfESSFin
11 5 fvexi 0˙V
12 11 a1i SFinMWfES0˙V
13 9 10 12 fdmfifsupp SFinMWfESfinSupp0˙f
14 13 adantr SFinMWfESflinCMS=ZfinSupp0˙f
15 14 imim1i finSupp0˙fxSfx=0˙SFinMWfESflinCMS=ZxSfx=0˙
16 15 expd finSupp0˙fxSfx=0˙SFinMWfESflinCMS=ZxSfx=0˙
17 ax-1 flinCMS=ZxSfx=0˙SFinMWfESflinCMS=ZxSfx=0˙
18 16 17 jaoi finSupp0˙fxSfx=0˙flinCMS=ZxSfx=0˙SFinMWfESflinCMS=ZxSfx=0˙
19 7 18 sylbir finSupp0˙fflinCMS=ZxSfx=0˙SFinMWfESflinCMS=ZxSfx=0˙
20 19 com12 SFinMWfESfinSupp0˙fflinCMS=ZxSfx=0˙flinCMS=ZxSfx=0˙
21 pm3.42 flinCMS=ZxSfx=0˙finSupp0˙fflinCMS=ZxSfx=0˙
22 20 21 impbid1 SFinMWfESfinSupp0˙fflinCMS=ZxSfx=0˙flinCMS=ZxSfx=0˙
23 22 ralbidva SFinMWfESfinSupp0˙fflinCMS=ZxSfx=0˙fESflinCMS=ZxSfx=0˙
24 23 anbi2d SFinMWS𝒫BfESfinSupp0˙fflinCMS=ZxSfx=0˙S𝒫BfESflinCMS=ZxSfx=0˙
25 6 24 bitrd SFinMWSlinIndSMS𝒫BfESflinCMS=ZxSfx=0˙