Metamath Proof Explorer


Theorem islinindfiss

Description: The property of being a linearly independent finite subset. (Contributed by AV, 27-Apr-2019)

Ref Expression
Hypotheses islininds.b B = Base M
islininds.z Z = 0 M
islininds.r R = Scalar M
islininds.e E = Base R
islininds.0 0 ˙ = 0 R
Assertion islinindfiss M W S Fin S 𝒫 B S linIndS M f E S f linC M S = Z x S f x = 0 ˙

Proof

Step Hyp Ref Expression
1 islininds.b B = Base M
2 islininds.z Z = 0 M
3 islininds.r R = Scalar M
4 islininds.e E = Base R
5 islininds.0 0 ˙ = 0 R
6 1 2 3 4 5 islinindfis S Fin M W S linIndS M S 𝒫 B f E S f linC M S = Z x S f x = 0 ˙
7 6 ancoms M W S Fin S linIndS M S 𝒫 B f E S f linC M S = Z x S f x = 0 ˙
8 7 3adant3 M W S Fin S 𝒫 B S linIndS M S 𝒫 B f E S f linC M S = Z x S f x = 0 ˙
9 8 3anibar M W S Fin S 𝒫 B S linIndS M f E S f linC M S = Z x S f x = 0 ˙