Metamath Proof Explorer


Theorem islinindfiss

Description: The property of being a linearly independent finite subset. (Contributed by AV, 27-Apr-2019)

Ref Expression
Hypotheses islininds.b B=BaseM
islininds.z Z=0M
islininds.r R=ScalarM
islininds.e E=BaseR
islininds.0 0˙=0R
Assertion islinindfiss MWSFinS𝒫BSlinIndSMfESflinCMS=ZxSfx=0˙

Proof

Step Hyp Ref Expression
1 islininds.b B=BaseM
2 islininds.z Z=0M
3 islininds.r R=ScalarM
4 islininds.e E=BaseR
5 islininds.0 0˙=0R
6 1 2 3 4 5 islinindfis SFinMWSlinIndSMS𝒫BfESflinCMS=ZxSfx=0˙
7 6 ancoms MWSFinSlinIndSMS𝒫BfESflinCMS=ZxSfx=0˙
8 7 3adant3 MWSFinS𝒫BSlinIndSMS𝒫BfESflinCMS=ZxSfx=0˙
9 8 3anibar MWSFinS𝒫BSlinIndSMfESflinCMS=ZxSfx=0˙