| Step |
Hyp |
Ref |
Expression |
| 1 |
|
islininds.b |
|- B = ( Base ` M ) |
| 2 |
|
islininds.z |
|- Z = ( 0g ` M ) |
| 3 |
|
islininds.r |
|- R = ( Scalar ` M ) |
| 4 |
|
islininds.e |
|- E = ( Base ` R ) |
| 5 |
|
islininds.0 |
|- .0. = ( 0g ` R ) |
| 6 |
1 2 3 4 5
|
islinindfis |
|- ( ( S e. Fin /\ M e. W ) -> ( S linIndS M <-> ( S e. ~P B /\ A. f e. ( E ^m S ) ( ( f ( linC ` M ) S ) = Z -> A. x e. S ( f ` x ) = .0. ) ) ) ) |
| 7 |
6
|
ancoms |
|- ( ( M e. W /\ S e. Fin ) -> ( S linIndS M <-> ( S e. ~P B /\ A. f e. ( E ^m S ) ( ( f ( linC ` M ) S ) = Z -> A. x e. S ( f ` x ) = .0. ) ) ) ) |
| 8 |
7
|
3adant3 |
|- ( ( M e. W /\ S e. Fin /\ S e. ~P B ) -> ( S linIndS M <-> ( S e. ~P B /\ A. f e. ( E ^m S ) ( ( f ( linC ` M ) S ) = Z -> A. x e. S ( f ` x ) = .0. ) ) ) ) |
| 9 |
8
|
3anibar |
|- ( ( M e. W /\ S e. Fin /\ S e. ~P B ) -> ( S linIndS M <-> A. f e. ( E ^m S ) ( ( f ( linC ` M ) S ) = Z -> A. x e. S ( f ` x ) = .0. ) ) ) |