Metamath Proof Explorer


Theorem islinindfiss

Description: The property of being a linearly independent finite subset. (Contributed by AV, 27-Apr-2019)

Ref Expression
Hypotheses islininds.b
|- B = ( Base ` M )
islininds.z
|- Z = ( 0g ` M )
islininds.r
|- R = ( Scalar ` M )
islininds.e
|- E = ( Base ` R )
islininds.0
|- .0. = ( 0g ` R )
Assertion islinindfiss
|- ( ( M e. W /\ S e. Fin /\ S e. ~P B ) -> ( S linIndS M <-> A. f e. ( E ^m S ) ( ( f ( linC ` M ) S ) = Z -> A. x e. S ( f ` x ) = .0. ) ) )

Proof

Step Hyp Ref Expression
1 islininds.b
 |-  B = ( Base ` M )
2 islininds.z
 |-  Z = ( 0g ` M )
3 islininds.r
 |-  R = ( Scalar ` M )
4 islininds.e
 |-  E = ( Base ` R )
5 islininds.0
 |-  .0. = ( 0g ` R )
6 1 2 3 4 5 islinindfis
 |-  ( ( S e. Fin /\ M e. W ) -> ( S linIndS M <-> ( S e. ~P B /\ A. f e. ( E ^m S ) ( ( f ( linC ` M ) S ) = Z -> A. x e. S ( f ` x ) = .0. ) ) ) )
7 6 ancoms
 |-  ( ( M e. W /\ S e. Fin ) -> ( S linIndS M <-> ( S e. ~P B /\ A. f e. ( E ^m S ) ( ( f ( linC ` M ) S ) = Z -> A. x e. S ( f ` x ) = .0. ) ) ) )
8 7 3adant3
 |-  ( ( M e. W /\ S e. Fin /\ S e. ~P B ) -> ( S linIndS M <-> ( S e. ~P B /\ A. f e. ( E ^m S ) ( ( f ( linC ` M ) S ) = Z -> A. x e. S ( f ` x ) = .0. ) ) ) )
9 8 3anibar
 |-  ( ( M e. W /\ S e. Fin /\ S e. ~P B ) -> ( S linIndS M <-> A. f e. ( E ^m S ) ( ( f ( linC ` M ) S ) = Z -> A. x e. S ( f ` x ) = .0. ) ) )