Metamath Proof Explorer


Theorem islinindfiss

Description: The property of being a linearly independent finite subset. (Contributed by AV, 27-Apr-2019)

Ref Expression
Hypotheses islininds.b 𝐵 = ( Base ‘ 𝑀 )
islininds.z 𝑍 = ( 0g𝑀 )
islininds.r 𝑅 = ( Scalar ‘ 𝑀 )
islininds.e 𝐸 = ( Base ‘ 𝑅 )
islininds.0 0 = ( 0g𝑅 )
Assertion islinindfiss ( ( 𝑀𝑊𝑆 ∈ Fin ∧ 𝑆 ∈ 𝒫 𝐵 ) → ( 𝑆 linIndS 𝑀 ↔ ∀ 𝑓 ∈ ( 𝐸m 𝑆 ) ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ) )

Proof

Step Hyp Ref Expression
1 islininds.b 𝐵 = ( Base ‘ 𝑀 )
2 islininds.z 𝑍 = ( 0g𝑀 )
3 islininds.r 𝑅 = ( Scalar ‘ 𝑀 )
4 islininds.e 𝐸 = ( Base ‘ 𝑅 )
5 islininds.0 0 = ( 0g𝑅 )
6 1 2 3 4 5 islinindfis ( ( 𝑆 ∈ Fin ∧ 𝑀𝑊 ) → ( 𝑆 linIndS 𝑀 ↔ ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸m 𝑆 ) ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ) ) )
7 6 ancoms ( ( 𝑀𝑊𝑆 ∈ Fin ) → ( 𝑆 linIndS 𝑀 ↔ ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸m 𝑆 ) ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ) ) )
8 7 3adant3 ( ( 𝑀𝑊𝑆 ∈ Fin ∧ 𝑆 ∈ 𝒫 𝐵 ) → ( 𝑆 linIndS 𝑀 ↔ ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸m 𝑆 ) ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ) ) )
9 8 3anibar ( ( 𝑀𝑊𝑆 ∈ Fin ∧ 𝑆 ∈ 𝒫 𝐵 ) → ( 𝑆 linIndS 𝑀 ↔ ∀ 𝑓 ∈ ( 𝐸m 𝑆 ) ( ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = 0 ) ) )