| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) |
| 2 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
| 3 |
|
eqid |
⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) |
| 5 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) |
| 6 |
1 2 3 4 5
|
linindsi |
⊢ ( 𝑆 linIndS 𝑀 → ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g ‘ 𝑀 ) ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) ) |
| 7 |
6
|
simpld |
⊢ ( 𝑆 linIndS 𝑀 → 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ) |