Metamath Proof Explorer


Theorem linindscl

Description: A linearly independent set is a subset of (the base set of) a module. (Contributed by AV, 13-Apr-2019)

Ref Expression
Assertion linindscl ( 𝑆 linIndS 𝑀𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 )
2 eqid ( 0g𝑀 ) = ( 0g𝑀 )
3 eqid ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 )
4 eqid ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) )
5 eqid ( 0g ‘ ( Scalar ‘ 𝑀 ) ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) )
6 1 2 3 4 5 linindsi ( 𝑆 linIndS 𝑀 → ( 𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) ∧ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑀 ) ) ↑m 𝑆 ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = ( 0g𝑀 ) ) → ∀ 𝑥𝑆 ( 𝑓𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑀 ) ) ) ) )
7 6 simpld ( 𝑆 linIndS 𝑀𝑆 ∈ 𝒫 ( Base ‘ 𝑀 ) )