Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Base ` M ) = ( Base ` M ) |
2 |
|
eqid |
|- ( 0g ` M ) = ( 0g ` M ) |
3 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
4 |
|
eqid |
|- ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) ) |
5 |
|
eqid |
|- ( 0g ` ( Scalar ` M ) ) = ( 0g ` ( Scalar ` M ) ) |
6 |
1 2 3 4 5
|
linindsi |
|- ( S linIndS M -> ( S e. ~P ( Base ` M ) /\ A. f e. ( ( Base ` ( Scalar ` M ) ) ^m S ) ( ( f finSupp ( 0g ` ( Scalar ` M ) ) /\ ( f ( linC ` M ) S ) = ( 0g ` M ) ) -> A. x e. S ( f ` x ) = ( 0g ` ( Scalar ` M ) ) ) ) ) |
7 |
6
|
simpld |
|- ( S linIndS M -> S e. ~P ( Base ` M ) ) |