Metamath Proof Explorer


Theorem linindscl

Description: A linearly independent set is a subset of (the base set of) a module. (Contributed by AV, 13-Apr-2019)

Ref Expression
Assertion linindscl S linIndS M S 𝒫 Base M

Proof

Step Hyp Ref Expression
1 eqid Base M = Base M
2 eqid 0 M = 0 M
3 eqid Scalar M = Scalar M
4 eqid Base Scalar M = Base Scalar M
5 eqid 0 Scalar M = 0 Scalar M
6 1 2 3 4 5 linindsi S linIndS M S 𝒫 Base M f Base Scalar M S finSupp 0 Scalar M f f linC M S = 0 M x S f x = 0 Scalar M
7 6 simpld S linIndS M S 𝒫 Base M