Metamath Proof Explorer


Theorem lindepsnlininds

Description: A linearly dependent subset is not a linearly independent subset. (Contributed by AV, 26-Apr-2019)

Ref Expression
Assertion lindepsnlininds SVMWSlinDepSM¬SlinIndSM

Proof

Step Hyp Ref Expression
1 breq12 s=Sm=MslinIndSmSlinIndSM
2 1 notbid s=Sm=M¬slinIndSm¬SlinIndSM
3 df-lindeps linDepS=sm|¬slinIndSm
4 2 3 brabga SVMWSlinDepSM¬SlinIndSM