Metamath Proof Explorer


Theorem lindepsnlininds

Description: A linearly dependent subset is not a linearly independent subset. (Contributed by AV, 26-Apr-2019)

Ref Expression
Assertion lindepsnlininds S V M W S linDepS M ¬ S linIndS M

Proof

Step Hyp Ref Expression
1 breq12 s = S m = M s linIndS m S linIndS M
2 1 notbid s = S m = M ¬ s linIndS m ¬ S linIndS M
3 df-lindeps linDepS = s m | ¬ s linIndS m
4 2 3 brabga S V M W S linDepS M ¬ S linIndS M