Metamath Proof Explorer


Theorem lindepsnlininds

Description: A linearly dependent subset is not a linearly independent subset. (Contributed by AV, 26-Apr-2019)

Ref Expression
Assertion lindepsnlininds ( ( 𝑆𝑉𝑀𝑊 ) → ( 𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀 ) )

Proof

Step Hyp Ref Expression
1 breq12 ( ( 𝑠 = 𝑆𝑚 = 𝑀 ) → ( 𝑠 linIndS 𝑚𝑆 linIndS 𝑀 ) )
2 1 notbid ( ( 𝑠 = 𝑆𝑚 = 𝑀 ) → ( ¬ 𝑠 linIndS 𝑚 ↔ ¬ 𝑆 linIndS 𝑀 ) )
3 df-lindeps linDepS = { ⟨ 𝑠 , 𝑚 ⟩ ∣ ¬ 𝑠 linIndS 𝑚 }
4 2 3 brabga ( ( 𝑆𝑉𝑀𝑊 ) → ( 𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀 ) )