Step |
Hyp |
Ref |
Expression |
1 |
|
islindeps.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
islindeps.z |
⊢ 𝑍 = ( 0g ‘ 𝑀 ) |
3 |
|
islindeps.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
4 |
|
islindeps.e |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
5 |
|
islindeps.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
6 |
|
lindepsnlininds |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ 𝑊 ) → ( 𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀 ) ) |
7 |
6
|
ancoms |
⊢ ( ( 𝑀 ∈ 𝑊 ∧ 𝑆 ∈ 𝒫 𝐵 ) → ( 𝑆 linDepS 𝑀 ↔ ¬ 𝑆 linIndS 𝑀 ) ) |
8 |
1 2 3 4 5
|
islininds |
⊢ ( ( 𝑆 ∈ 𝒫 𝐵 ∧ 𝑀 ∈ 𝑊 ) → ( 𝑆 linIndS 𝑀 ↔ ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ) |
9 |
8
|
ancoms |
⊢ ( ( 𝑀 ∈ 𝑊 ∧ 𝑆 ∈ 𝒫 𝐵 ) → ( 𝑆 linIndS 𝑀 ↔ ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ) |
10 |
|
ibar |
⊢ ( 𝑆 ∈ 𝒫 𝐵 → ( ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ↔ ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ) |
11 |
10
|
bicomd |
⊢ ( 𝑆 ∈ 𝒫 𝐵 → ( ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ↔ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
12 |
11
|
adantl |
⊢ ( ( 𝑀 ∈ 𝑊 ∧ 𝑆 ∈ 𝒫 𝐵 ) → ( ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ↔ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
13 |
9 12
|
bitrd |
⊢ ( ( 𝑀 ∈ 𝑊 ∧ 𝑆 ∈ 𝒫 𝐵 ) → ( 𝑆 linIndS 𝑀 ↔ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
14 |
13
|
notbid |
⊢ ( ( 𝑀 ∈ 𝑊 ∧ 𝑆 ∈ 𝒫 𝐵 ) → ( ¬ 𝑆 linIndS 𝑀 ↔ ¬ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
15 |
|
rexnal |
⊢ ( ∃ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ¬ ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ↔ ¬ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) |
16 |
|
df-ne |
⊢ ( ( 𝑓 ‘ 𝑥 ) ≠ 0 ↔ ¬ ( 𝑓 ‘ 𝑥 ) = 0 ) |
17 |
16
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) ≠ 0 ↔ ∃ 𝑥 ∈ 𝑆 ¬ ( 𝑓 ‘ 𝑥 ) = 0 ) |
18 |
|
rexnal |
⊢ ( ∃ 𝑥 ∈ 𝑆 ¬ ( 𝑓 ‘ 𝑥 ) = 0 ↔ ¬ ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) |
19 |
17 18
|
bitr2i |
⊢ ( ¬ ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ↔ ∃ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) ≠ 0 ) |
20 |
19
|
anbi2i |
⊢ ( ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ∧ ¬ ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ↔ ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ∧ ∃ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) ≠ 0 ) ) |
21 |
|
pm4.61 |
⊢ ( ¬ ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ↔ ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ∧ ¬ ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) |
22 |
|
df-3an |
⊢ ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ∧ ∃ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) ≠ 0 ) ↔ ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ∧ ∃ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) ≠ 0 ) ) |
23 |
20 21 22
|
3bitr4i |
⊢ ( ¬ ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ↔ ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ∧ ∃ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) ≠ 0 ) ) |
24 |
23
|
rexbii |
⊢ ( ∃ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ¬ ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ↔ ∃ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ∧ ∃ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) ≠ 0 ) ) |
25 |
15 24
|
bitr3i |
⊢ ( ¬ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ↔ ∃ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ∧ ∃ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) ≠ 0 ) ) |
26 |
25
|
a1i |
⊢ ( ( 𝑀 ∈ 𝑊 ∧ 𝑆 ∈ 𝒫 𝐵 ) → ( ¬ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ↔ ∃ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ∧ ∃ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) ≠ 0 ) ) ) |
27 |
7 14 26
|
3bitrd |
⊢ ( ( 𝑀 ∈ 𝑊 ∧ 𝑆 ∈ 𝒫 𝐵 ) → ( 𝑆 linDepS 𝑀 ↔ ∃ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ∧ ∃ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) ≠ 0 ) ) ) |