Step |
Hyp |
Ref |
Expression |
1 |
|
islindeps.b |
|- B = ( Base ` M ) |
2 |
|
islindeps.z |
|- Z = ( 0g ` M ) |
3 |
|
islindeps.r |
|- R = ( Scalar ` M ) |
4 |
|
islindeps.e |
|- E = ( Base ` R ) |
5 |
|
islindeps.0 |
|- .0. = ( 0g ` R ) |
6 |
|
lindepsnlininds |
|- ( ( S e. ~P B /\ M e. W ) -> ( S linDepS M <-> -. S linIndS M ) ) |
7 |
6
|
ancoms |
|- ( ( M e. W /\ S e. ~P B ) -> ( S linDepS M <-> -. S linIndS M ) ) |
8 |
1 2 3 4 5
|
islininds |
|- ( ( S e. ~P B /\ M e. W ) -> ( S linIndS M <-> ( S e. ~P B /\ A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) ) ) ) |
9 |
8
|
ancoms |
|- ( ( M e. W /\ S e. ~P B ) -> ( S linIndS M <-> ( S e. ~P B /\ A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) ) ) ) |
10 |
|
ibar |
|- ( S e. ~P B -> ( A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) <-> ( S e. ~P B /\ A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) ) ) ) |
11 |
10
|
bicomd |
|- ( S e. ~P B -> ( ( S e. ~P B /\ A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) ) <-> A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) ) ) |
12 |
11
|
adantl |
|- ( ( M e. W /\ S e. ~P B ) -> ( ( S e. ~P B /\ A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) ) <-> A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) ) ) |
13 |
9 12
|
bitrd |
|- ( ( M e. W /\ S e. ~P B ) -> ( S linIndS M <-> A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) ) ) |
14 |
13
|
notbid |
|- ( ( M e. W /\ S e. ~P B ) -> ( -. S linIndS M <-> -. A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) ) ) |
15 |
|
rexnal |
|- ( E. f e. ( E ^m S ) -. ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) <-> -. A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) ) |
16 |
|
df-ne |
|- ( ( f ` x ) =/= .0. <-> -. ( f ` x ) = .0. ) |
17 |
16
|
rexbii |
|- ( E. x e. S ( f ` x ) =/= .0. <-> E. x e. S -. ( f ` x ) = .0. ) |
18 |
|
rexnal |
|- ( E. x e. S -. ( f ` x ) = .0. <-> -. A. x e. S ( f ` x ) = .0. ) |
19 |
17 18
|
bitr2i |
|- ( -. A. x e. S ( f ` x ) = .0. <-> E. x e. S ( f ` x ) =/= .0. ) |
20 |
19
|
anbi2i |
|- ( ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) /\ -. A. x e. S ( f ` x ) = .0. ) <-> ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) /\ E. x e. S ( f ` x ) =/= .0. ) ) |
21 |
|
pm4.61 |
|- ( -. ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) <-> ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) /\ -. A. x e. S ( f ` x ) = .0. ) ) |
22 |
|
df-3an |
|- ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z /\ E. x e. S ( f ` x ) =/= .0. ) <-> ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) /\ E. x e. S ( f ` x ) =/= .0. ) ) |
23 |
20 21 22
|
3bitr4i |
|- ( -. ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) <-> ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z /\ E. x e. S ( f ` x ) =/= .0. ) ) |
24 |
23
|
rexbii |
|- ( E. f e. ( E ^m S ) -. ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) <-> E. f e. ( E ^m S ) ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z /\ E. x e. S ( f ` x ) =/= .0. ) ) |
25 |
15 24
|
bitr3i |
|- ( -. A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) <-> E. f e. ( E ^m S ) ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z /\ E. x e. S ( f ` x ) =/= .0. ) ) |
26 |
25
|
a1i |
|- ( ( M e. W /\ S e. ~P B ) -> ( -. A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) <-> E. f e. ( E ^m S ) ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z /\ E. x e. S ( f ` x ) =/= .0. ) ) ) |
27 |
7 14 26
|
3bitrd |
|- ( ( M e. W /\ S e. ~P B ) -> ( S linDepS M <-> E. f e. ( E ^m S ) ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z /\ E. x e. S ( f ` x ) =/= .0. ) ) ) |