Step |
Hyp |
Ref |
Expression |
1 |
|
islininds.b |
|- B = ( Base ` M ) |
2 |
|
islininds.z |
|- Z = ( 0g ` M ) |
3 |
|
islininds.r |
|- R = ( Scalar ` M ) |
4 |
|
islininds.e |
|- E = ( Base ` R ) |
5 |
|
islininds.0 |
|- .0. = ( 0g ` R ) |
6 |
|
simpl |
|- ( ( s = S /\ m = M ) -> s = S ) |
7 |
|
fveq2 |
|- ( m = M -> ( Base ` m ) = ( Base ` M ) ) |
8 |
7 1
|
eqtr4di |
|- ( m = M -> ( Base ` m ) = B ) |
9 |
8
|
adantl |
|- ( ( s = S /\ m = M ) -> ( Base ` m ) = B ) |
10 |
9
|
pweqd |
|- ( ( s = S /\ m = M ) -> ~P ( Base ` m ) = ~P B ) |
11 |
6 10
|
eleq12d |
|- ( ( s = S /\ m = M ) -> ( s e. ~P ( Base ` m ) <-> S e. ~P B ) ) |
12 |
|
fveq2 |
|- ( m = M -> ( Scalar ` m ) = ( Scalar ` M ) ) |
13 |
12 3
|
eqtr4di |
|- ( m = M -> ( Scalar ` m ) = R ) |
14 |
13
|
fveq2d |
|- ( m = M -> ( Base ` ( Scalar ` m ) ) = ( Base ` R ) ) |
15 |
14 4
|
eqtr4di |
|- ( m = M -> ( Base ` ( Scalar ` m ) ) = E ) |
16 |
15
|
adantl |
|- ( ( s = S /\ m = M ) -> ( Base ` ( Scalar ` m ) ) = E ) |
17 |
16 6
|
oveq12d |
|- ( ( s = S /\ m = M ) -> ( ( Base ` ( Scalar ` m ) ) ^m s ) = ( E ^m S ) ) |
18 |
12
|
adantl |
|- ( ( s = S /\ m = M ) -> ( Scalar ` m ) = ( Scalar ` M ) ) |
19 |
18 3
|
eqtr4di |
|- ( ( s = S /\ m = M ) -> ( Scalar ` m ) = R ) |
20 |
19
|
fveq2d |
|- ( ( s = S /\ m = M ) -> ( 0g ` ( Scalar ` m ) ) = ( 0g ` R ) ) |
21 |
20 5
|
eqtr4di |
|- ( ( s = S /\ m = M ) -> ( 0g ` ( Scalar ` m ) ) = .0. ) |
22 |
21
|
breq2d |
|- ( ( s = S /\ m = M ) -> ( f finSupp ( 0g ` ( Scalar ` m ) ) <-> f finSupp .0. ) ) |
23 |
|
fveq2 |
|- ( m = M -> ( linC ` m ) = ( linC ` M ) ) |
24 |
23
|
adantl |
|- ( ( s = S /\ m = M ) -> ( linC ` m ) = ( linC ` M ) ) |
25 |
|
eqidd |
|- ( ( s = S /\ m = M ) -> f = f ) |
26 |
24 25 6
|
oveq123d |
|- ( ( s = S /\ m = M ) -> ( f ( linC ` m ) s ) = ( f ( linC ` M ) S ) ) |
27 |
|
fveq2 |
|- ( m = M -> ( 0g ` m ) = ( 0g ` M ) ) |
28 |
27
|
adantl |
|- ( ( s = S /\ m = M ) -> ( 0g ` m ) = ( 0g ` M ) ) |
29 |
28 2
|
eqtr4di |
|- ( ( s = S /\ m = M ) -> ( 0g ` m ) = Z ) |
30 |
26 29
|
eqeq12d |
|- ( ( s = S /\ m = M ) -> ( ( f ( linC ` m ) s ) = ( 0g ` m ) <-> ( f ( linC ` M ) S ) = Z ) ) |
31 |
22 30
|
anbi12d |
|- ( ( s = S /\ m = M ) -> ( ( f finSupp ( 0g ` ( Scalar ` m ) ) /\ ( f ( linC ` m ) s ) = ( 0g ` m ) ) <-> ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) ) ) |
32 |
13
|
fveq2d |
|- ( m = M -> ( 0g ` ( Scalar ` m ) ) = ( 0g ` R ) ) |
33 |
32 5
|
eqtr4di |
|- ( m = M -> ( 0g ` ( Scalar ` m ) ) = .0. ) |
34 |
33
|
adantl |
|- ( ( s = S /\ m = M ) -> ( 0g ` ( Scalar ` m ) ) = .0. ) |
35 |
34
|
eqeq2d |
|- ( ( s = S /\ m = M ) -> ( ( f ` x ) = ( 0g ` ( Scalar ` m ) ) <-> ( f ` x ) = .0. ) ) |
36 |
6 35
|
raleqbidv |
|- ( ( s = S /\ m = M ) -> ( A. x e. s ( f ` x ) = ( 0g ` ( Scalar ` m ) ) <-> A. x e. S ( f ` x ) = .0. ) ) |
37 |
31 36
|
imbi12d |
|- ( ( s = S /\ m = M ) -> ( ( ( f finSupp ( 0g ` ( Scalar ` m ) ) /\ ( f ( linC ` m ) s ) = ( 0g ` m ) ) -> A. x e. s ( f ` x ) = ( 0g ` ( Scalar ` m ) ) ) <-> ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) ) ) |
38 |
17 37
|
raleqbidv |
|- ( ( s = S /\ m = M ) -> ( A. f e. ( ( Base ` ( Scalar ` m ) ) ^m s ) ( ( f finSupp ( 0g ` ( Scalar ` m ) ) /\ ( f ( linC ` m ) s ) = ( 0g ` m ) ) -> A. x e. s ( f ` x ) = ( 0g ` ( Scalar ` m ) ) ) <-> A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) ) ) |
39 |
11 38
|
anbi12d |
|- ( ( s = S /\ m = M ) -> ( ( s e. ~P ( Base ` m ) /\ A. f e. ( ( Base ` ( Scalar ` m ) ) ^m s ) ( ( f finSupp ( 0g ` ( Scalar ` m ) ) /\ ( f ( linC ` m ) s ) = ( 0g ` m ) ) -> A. x e. s ( f ` x ) = ( 0g ` ( Scalar ` m ) ) ) ) <-> ( S e. ~P B /\ A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) ) ) ) |
40 |
|
df-lininds |
|- linIndS = { <. s , m >. | ( s e. ~P ( Base ` m ) /\ A. f e. ( ( Base ` ( Scalar ` m ) ) ^m s ) ( ( f finSupp ( 0g ` ( Scalar ` m ) ) /\ ( f ( linC ` m ) s ) = ( 0g ` m ) ) -> A. x e. s ( f ` x ) = ( 0g ` ( Scalar ` m ) ) ) ) } |
41 |
39 40
|
brabga |
|- ( ( S e. V /\ M e. W ) -> ( S linIndS M <-> ( S e. ~P B /\ A. f e. ( E ^m S ) ( ( f finSupp .0. /\ ( f ( linC ` M ) S ) = Z ) -> A. x e. S ( f ` x ) = .0. ) ) ) ) |