Step |
Hyp |
Ref |
Expression |
1 |
|
islininds.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
islininds.z |
⊢ 𝑍 = ( 0g ‘ 𝑀 ) |
3 |
|
islininds.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
4 |
|
islininds.e |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
5 |
|
islininds.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
6 |
|
simpl |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → 𝑠 = 𝑆 ) |
7 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = ( Base ‘ 𝑀 ) ) |
8 |
7 1
|
eqtr4di |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = 𝐵 ) |
9 |
8
|
adantl |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( Base ‘ 𝑚 ) = 𝐵 ) |
10 |
9
|
pweqd |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → 𝒫 ( Base ‘ 𝑚 ) = 𝒫 𝐵 ) |
11 |
6 10
|
eleq12d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ↔ 𝑆 ∈ 𝒫 𝐵 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( Scalar ‘ 𝑚 ) = ( Scalar ‘ 𝑀 ) ) |
13 |
12 3
|
eqtr4di |
⊢ ( 𝑚 = 𝑀 → ( Scalar ‘ 𝑚 ) = 𝑅 ) |
14 |
13
|
fveq2d |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ ( Scalar ‘ 𝑚 ) ) = ( Base ‘ 𝑅 ) ) |
15 |
14 4
|
eqtr4di |
⊢ ( 𝑚 = 𝑀 → ( Base ‘ ( Scalar ‘ 𝑚 ) ) = 𝐸 ) |
16 |
15
|
adantl |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( Base ‘ ( Scalar ‘ 𝑚 ) ) = 𝐸 ) |
17 |
16 6
|
oveq12d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑠 ) = ( 𝐸 ↑m 𝑆 ) ) |
18 |
12
|
adantl |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( Scalar ‘ 𝑚 ) = ( Scalar ‘ 𝑀 ) ) |
19 |
18 3
|
eqtr4di |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( Scalar ‘ 𝑚 ) = 𝑅 ) |
20 |
19
|
fveq2d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( 0g ‘ ( Scalar ‘ 𝑚 ) ) = ( 0g ‘ 𝑅 ) ) |
21 |
20 5
|
eqtr4di |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( 0g ‘ ( Scalar ‘ 𝑚 ) ) = 0 ) |
22 |
21
|
breq2d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ↔ 𝑓 finSupp 0 ) ) |
23 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( linC ‘ 𝑚 ) = ( linC ‘ 𝑀 ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( linC ‘ 𝑚 ) = ( linC ‘ 𝑀 ) ) |
25 |
|
eqidd |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → 𝑓 = 𝑓 ) |
26 |
24 25 6
|
oveq123d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( 𝑓 ( linC ‘ 𝑚 ) 𝑠 ) = ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) ) |
27 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( 0g ‘ 𝑚 ) = ( 0g ‘ 𝑀 ) ) |
28 |
27
|
adantl |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( 0g ‘ 𝑚 ) = ( 0g ‘ 𝑀 ) ) |
29 |
28 2
|
eqtr4di |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( 0g ‘ 𝑚 ) = 𝑍 ) |
30 |
26 29
|
eqeq12d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( ( 𝑓 ( linC ‘ 𝑚 ) 𝑠 ) = ( 0g ‘ 𝑚 ) ↔ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ) |
31 |
22 30
|
anbi12d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ ( 𝑓 ( linC ‘ 𝑚 ) 𝑠 ) = ( 0g ‘ 𝑚 ) ) ↔ ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) ) ) |
32 |
13
|
fveq2d |
⊢ ( 𝑚 = 𝑀 → ( 0g ‘ ( Scalar ‘ 𝑚 ) ) = ( 0g ‘ 𝑅 ) ) |
33 |
32 5
|
eqtr4di |
⊢ ( 𝑚 = 𝑀 → ( 0g ‘ ( Scalar ‘ 𝑚 ) ) = 0 ) |
34 |
33
|
adantl |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( 0g ‘ ( Scalar ‘ 𝑚 ) ) = 0 ) |
35 |
34
|
eqeq2d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ↔ ( 𝑓 ‘ 𝑥 ) = 0 ) ) |
36 |
6 35
|
raleqbidv |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( ∀ 𝑥 ∈ 𝑠 ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ↔ ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) |
37 |
31 36
|
imbi12d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ ( 𝑓 ( linC ‘ 𝑚 ) 𝑠 ) = ( 0g ‘ 𝑚 ) ) → ∀ 𝑥 ∈ 𝑠 ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ) ↔ ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
38 |
17 37
|
raleqbidv |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑠 ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ ( 𝑓 ( linC ‘ 𝑚 ) 𝑠 ) = ( 0g ‘ 𝑚 ) ) → ∀ 𝑥 ∈ 𝑠 ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ) ↔ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |
39 |
11 38
|
anbi12d |
⊢ ( ( 𝑠 = 𝑆 ∧ 𝑚 = 𝑀 ) → ( ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ∧ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑠 ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ ( 𝑓 ( linC ‘ 𝑚 ) 𝑠 ) = ( 0g ‘ 𝑚 ) ) → ∀ 𝑥 ∈ 𝑠 ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ) ) ↔ ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ) |
40 |
|
df-lininds |
⊢ linIndS = { 〈 𝑠 , 𝑚 〉 ∣ ( 𝑠 ∈ 𝒫 ( Base ‘ 𝑚 ) ∧ ∀ 𝑓 ∈ ( ( Base ‘ ( Scalar ‘ 𝑚 ) ) ↑m 𝑠 ) ( ( 𝑓 finSupp ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ∧ ( 𝑓 ( linC ‘ 𝑚 ) 𝑠 ) = ( 0g ‘ 𝑚 ) ) → ∀ 𝑥 ∈ 𝑠 ( 𝑓 ‘ 𝑥 ) = ( 0g ‘ ( Scalar ‘ 𝑚 ) ) ) ) } |
41 |
39 40
|
brabga |
⊢ ( ( 𝑆 ∈ 𝑉 ∧ 𝑀 ∈ 𝑊 ) → ( 𝑆 linIndS 𝑀 ↔ ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ) |