Step |
Hyp |
Ref |
Expression |
1 |
|
islininds.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
islininds.z |
⊢ 𝑍 = ( 0g ‘ 𝑀 ) |
3 |
|
islininds.r |
⊢ 𝑅 = ( Scalar ‘ 𝑀 ) |
4 |
|
islininds.e |
⊢ 𝐸 = ( Base ‘ 𝑅 ) |
5 |
|
islininds.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
6 |
|
linindsv |
⊢ ( 𝑆 linIndS 𝑀 → ( 𝑆 ∈ V ∧ 𝑀 ∈ V ) ) |
7 |
1 2 3 4 5
|
islininds |
⊢ ( ( 𝑆 ∈ V ∧ 𝑀 ∈ V ) → ( 𝑆 linIndS 𝑀 ↔ ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ) |
8 |
6 7
|
syl |
⊢ ( 𝑆 linIndS 𝑀 → ( 𝑆 linIndS 𝑀 ↔ ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) ) |
9 |
8
|
ibi |
⊢ ( 𝑆 linIndS 𝑀 → ( 𝑆 ∈ 𝒫 𝐵 ∧ ∀ 𝑓 ∈ ( 𝐸 ↑m 𝑆 ) ( ( 𝑓 finSupp 0 ∧ ( 𝑓 ( linC ‘ 𝑀 ) 𝑆 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑆 ( 𝑓 ‘ 𝑥 ) = 0 ) ) ) |