Metamath Proof Explorer


Theorem islindeps

Description: The property of being a linearly dependent subset. (Contributed by AV, 26-Apr-2019) (Revised by AV, 30-Jul-2019)

Ref Expression
Hypotheses islindeps.b B = Base M
islindeps.z Z = 0 M
islindeps.r R = Scalar M
islindeps.e E = Base R
islindeps.0 0 ˙ = 0 R
Assertion islindeps M W S 𝒫 B S linDepS M f E S finSupp 0 ˙ f f linC M S = Z x S f x 0 ˙

Proof

Step Hyp Ref Expression
1 islindeps.b B = Base M
2 islindeps.z Z = 0 M
3 islindeps.r R = Scalar M
4 islindeps.e E = Base R
5 islindeps.0 0 ˙ = 0 R
6 lindepsnlininds S 𝒫 B M W S linDepS M ¬ S linIndS M
7 6 ancoms M W S 𝒫 B S linDepS M ¬ S linIndS M
8 1 2 3 4 5 islininds S 𝒫 B M W S linIndS M S 𝒫 B f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙
9 8 ancoms M W S 𝒫 B S linIndS M S 𝒫 B f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙
10 ibar S 𝒫 B f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙ S 𝒫 B f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙
11 10 bicomd S 𝒫 B S 𝒫 B f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙ f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙
12 11 adantl M W S 𝒫 B S 𝒫 B f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙ f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙
13 9 12 bitrd M W S 𝒫 B S linIndS M f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙
14 13 notbid M W S 𝒫 B ¬ S linIndS M ¬ f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙
15 rexnal f E S ¬ finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙ ¬ f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙
16 df-ne f x 0 ˙ ¬ f x = 0 ˙
17 16 rexbii x S f x 0 ˙ x S ¬ f x = 0 ˙
18 rexnal x S ¬ f x = 0 ˙ ¬ x S f x = 0 ˙
19 17 18 bitr2i ¬ x S f x = 0 ˙ x S f x 0 ˙
20 19 anbi2i finSupp 0 ˙ f f linC M S = Z ¬ x S f x = 0 ˙ finSupp 0 ˙ f f linC M S = Z x S f x 0 ˙
21 pm4.61 ¬ finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙ finSupp 0 ˙ f f linC M S = Z ¬ x S f x = 0 ˙
22 df-3an finSupp 0 ˙ f f linC M S = Z x S f x 0 ˙ finSupp 0 ˙ f f linC M S = Z x S f x 0 ˙
23 20 21 22 3bitr4i ¬ finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙ finSupp 0 ˙ f f linC M S = Z x S f x 0 ˙
24 23 rexbii f E S ¬ finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙ f E S finSupp 0 ˙ f f linC M S = Z x S f x 0 ˙
25 15 24 bitr3i ¬ f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙ f E S finSupp 0 ˙ f f linC M S = Z x S f x 0 ˙
26 25 a1i M W S 𝒫 B ¬ f E S finSupp 0 ˙ f f linC M S = Z x S f x = 0 ˙ f E S finSupp 0 ˙ f f linC M S = Z x S f x 0 ˙
27 7 14 26 3bitrd M W S 𝒫 B S linDepS M f E S finSupp 0 ˙ f f linC M S = Z x S f x 0 ˙