Metamath Proof Explorer


Theorem pm3.42

Description: Theorem *3.42 of WhiteheadRussell p. 113. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion pm3.42 ( ( 𝜓𝜒 ) → ( ( 𝜑𝜓 ) → 𝜒 ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝜑𝜓 ) → 𝜓 )
2 1 imim1i ( ( 𝜓𝜒 ) → ( ( 𝜑𝜓 ) → 𝜒 ) )