Metamath Proof Explorer


Theorem lmhmlem

Description: Non-quantified consequences of a left module homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses lmhmlem.k K=ScalarS
lmhmlem.l L=ScalarT
Assertion lmhmlem FSLMHomTSLModTLModFSGrpHomTL=K

Proof

Step Hyp Ref Expression
1 lmhmlem.k K=ScalarS
2 lmhmlem.l L=ScalarT
3 eqid BaseK=BaseK
4 eqid BaseS=BaseS
5 eqid S=S
6 eqid T=T
7 1 2 3 4 5 6 islmhm FSLMHomTSLModTLModFSGrpHomTL=KaBaseKbBaseSFaSb=aTFb
8 3simpa FSGrpHomTL=KaBaseKbBaseSFaSb=aTFbFSGrpHomTL=K
9 8 anim2i SLModTLModFSGrpHomTL=KaBaseKbBaseSFaSb=aTFbSLModTLModFSGrpHomTL=K
10 7 9 sylbi FSLMHomTSLModTLModFSGrpHomTL=K