Metamath Proof Explorer


Theorem lmodgrpd

Description: A left module is a group. (Contributed by SN, 16-May-2024)

Ref Expression
Hypothesis lmodgrpd.1 φ W LMod
Assertion lmodgrpd φ W Grp

Proof

Step Hyp Ref Expression
1 lmodgrpd.1 φ W LMod
2 lmodgrp W LMod W Grp
3 1 2 syl φ W Grp