Metamath Proof Explorer


Theorem lmodring

Description: The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypothesis lmodring.1 F=ScalarW
Assertion lmodring WLModFRing

Proof

Step Hyp Ref Expression
1 lmodring.1 F=ScalarW
2 eqid BaseW=BaseW
3 eqid +W=+W
4 eqid W=W
5 eqid BaseF=BaseF
6 eqid +F=+F
7 eqid F=F
8 eqid 1F=1F
9 2 3 4 1 5 6 7 8 islmod WLModWGrpFRingqBaseFrBaseFxBaseWwBaseWrWwBaseWrWw+Wx=rWw+WrWxq+FrWw=qWw+WrWwqFrWw=qWrWw1FWw=w
10 9 simp2bi WLModFRing