Metamath Proof Explorer


Theorem lmodsn0

Description: The set of scalars in a left module is nonempty. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmodsn0.f F=ScalarW
lmodsn0.b B=BaseF
Assertion lmodsn0 WLModB

Proof

Step Hyp Ref Expression
1 lmodsn0.f F=ScalarW
2 lmodsn0.b B=BaseF
3 1 lmodfgrp WLModFGrp
4 2 grpbn0 FGrpB
5 3 4 syl WLModB