Metamath Proof Explorer


Theorem lmodstr

Description: A constructed left module or left vector space is a structure. (Contributed by Mario Carneiro, 1-Oct-2013) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis lmodstr.w W=BasendxB+ndx+˙ScalarndxFndx·˙
Assertion lmodstr WStruct16

Proof

Step Hyp Ref Expression
1 lmodstr.w W=BasendxB+ndx+˙ScalarndxFndx·˙
2 1nn 1
3 basendx Basendx=1
4 1lt2 1<2
5 2nn 2
6 plusgndx +ndx=2
7 2lt5 2<5
8 5nn 5
9 scandx Scalarndx=5
10 2 3 4 5 6 7 8 9 strle3 BasendxB+ndx+˙ScalarndxFStruct15
11 6nn 6
12 vscandx ndx=6
13 11 12 strle1 ndx·˙Struct66
14 5lt6 5<6
15 10 13 14 strleun BasendxB+ndx+˙ScalarndxFndx·˙Struct16
16 1 15 eqbrtri WStruct16