Database BASIC ALGEBRAIC STRUCTURES Left modules Definition and basic properties lmodsubeq0  
				
		 
		
			
		 
		Description:   If the difference between two vectors is zero, they are equal.
       ( hvsubeq0  analog.)  (Contributed by NM , 31-Mar-2014)   (Revised by Mario Carneiro , 19-Jun-2014) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						lmodsubeq0.v   ⊢   V  =  Base  W      
					 
					
						lmodsubeq0.o   ⊢   0  ˙ =  0  W      
					 
					
						lmodsubeq0.m   ⊢   -  ˙ =  -  W      
					 
				
					Assertion 
					lmodsubeq0    ⊢    W  ∈  LMod    ∧   A  ∈  V    ∧   B  ∈  V     →    A  -  ˙ B =  0  ˙   ↔   A  =  B          
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							lmodsubeq0.v  ⊢   V  =  Base  W      
						
							2 
								
							 
							lmodsubeq0.o  ⊢   0  ˙ =  0  W      
						
							3 
								
							 
							lmodsubeq0.m  ⊢   -  ˙ =  -  W      
						
							4 
								
							 
							lmodgrp   ⊢   W  ∈  LMod    →   W  ∈  Grp         
						
							5 
								1  2  3 
							 
							grpsubeq0   ⊢    W  ∈  Grp    ∧   A  ∈  V    ∧   B  ∈  V     →    A  -  ˙ B =  0  ˙   ↔   A  =  B          
						
							6 
								4  5 
							 
							syl3an1   ⊢    W  ∈  LMod    ∧   A  ∈  V    ∧   B  ∈  V     →    A  -  ˙ B =  0  ˙   ↔   A  =  B