Metamath Proof Explorer


Theorem lmodvaddsub4

Description: Vector addition/subtraction law. (Contributed by NM, 31-Mar-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmod4.v V=BaseW
lmod4.p +˙=+W
lmodvaddsub4.m -˙=-W
Assertion lmodvaddsub4 WLModAVBVCVDVA+˙B=C+˙DA-˙C=D-˙B

Proof

Step Hyp Ref Expression
1 lmod4.v V=BaseW
2 lmod4.p +˙=+W
3 lmodvaddsub4.m -˙=-W
4 lmodabl WLModWAbel
5 1 2 3 abladdsub4 WAbelAVBVCVDVA+˙B=C+˙DA-˙C=D-˙B
6 4 5 syl3an1 WLModAVBVCVDVA+˙B=C+˙DA-˙C=D-˙B