Metamath Proof Explorer
		
		
		
		Description:  Vector addition/subtraction law.  (Contributed by NM, 31-Mar-2014)
       (Revised by Mario Carneiro, 19-Jun-2014)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | lmod4.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
					
						|  |  | lmod4.p | ⊢  +   =  ( +g ‘ 𝑊 ) | 
					
						|  |  | lmodvaddsub4.m | ⊢  −   =  ( -g ‘ 𝑊 ) | 
				
					|  | Assertion | lmodvaddsub4 | ⊢  ( ( 𝑊  ∈  LMod  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝑉  ∧  𝐷  ∈  𝑉 ) )  →  ( ( 𝐴  +  𝐵 )  =  ( 𝐶  +  𝐷 )  ↔  ( 𝐴  −  𝐶 )  =  ( 𝐷  −  𝐵 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmod4.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | lmod4.p | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 3 |  | lmodvaddsub4.m | ⊢  −   =  ( -g ‘ 𝑊 ) | 
						
							| 4 |  | lmodabl | ⊢ ( 𝑊  ∈  LMod  →  𝑊  ∈  Abel ) | 
						
							| 5 | 1 2 3 | abladdsub4 | ⊢ ( ( 𝑊  ∈  Abel  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝑉  ∧  𝐷  ∈  𝑉 ) )  →  ( ( 𝐴  +  𝐵 )  =  ( 𝐶  +  𝐷 )  ↔  ( 𝐴  −  𝐶 )  =  ( 𝐷  −  𝐵 ) ) ) | 
						
							| 6 | 4 5 | syl3an1 | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  ∧  ( 𝐶  ∈  𝑉  ∧  𝐷  ∈  𝑉 ) )  →  ( ( 𝐴  +  𝐵 )  =  ( 𝐶  +  𝐷 )  ↔  ( 𝐴  −  𝐶 )  =  ( 𝐷  −  𝐵 ) ) ) |