Metamath Proof Explorer


Theorem lncvrat

Description: A line covers the atoms it contains. (Contributed by NM, 30-Apr-2012)

Ref Expression
Hypotheses lncvrat.b B=BaseK
lncvrat.l ˙=K
lncvrat.c C=K
lncvrat.a A=AtomsK
lncvrat.n N=LinesK
lncvrat.m M=pmapK
Assertion lncvrat KHLXBPAMXNP˙XPCX

Proof

Step Hyp Ref Expression
1 lncvrat.b B=BaseK
2 lncvrat.l ˙=K
3 lncvrat.c C=K
4 lncvrat.a A=AtomsK
5 lncvrat.n N=LinesK
6 lncvrat.m M=pmapK
7 simprl KHLXBPAMXNP˙XMXN
8 simpl1 KHLXBPAMXNP˙XKHL
9 simpl2 KHLXBPAMXNP˙XXB
10 eqid joinK=joinK
11 1 10 4 5 6 isline3 KHLXBMXNqArAqrX=qjoinKr
12 8 9 11 syl2anc KHLXBPAMXNP˙XMXNqArAqrX=qjoinKr
13 7 12 mpbid KHLXBPAMXNP˙XqArAqrX=qjoinKr
14 simp1l1 KHLXBPAMXNP˙XqArAqrX=qjoinKrKHL
15 simp1l3 KHLXBPAMXNP˙XqArAqrX=qjoinKrPA
16 simp2l KHLXBPAMXNP˙XqArAqrX=qjoinKrqA
17 simp2r KHLXBPAMXNP˙XqArAqrX=qjoinKrrA
18 simp3l KHLXBPAMXNP˙XqArAqrX=qjoinKrqr
19 simp1rr KHLXBPAMXNP˙XqArAqrX=qjoinKrP˙X
20 simp3r KHLXBPAMXNP˙XqArAqrX=qjoinKrX=qjoinKr
21 19 20 breqtrd KHLXBPAMXNP˙XqArAqrX=qjoinKrP˙qjoinKr
22 2 10 3 4 atcvrj2 KHLPAqArAqrP˙qjoinKrPCqjoinKr
23 14 15 16 17 18 21 22 syl132anc KHLXBPAMXNP˙XqArAqrX=qjoinKrPCqjoinKr
24 23 20 breqtrrd KHLXBPAMXNP˙XqArAqrX=qjoinKrPCX
25 24 3exp KHLXBPAMXNP˙XqArAqrX=qjoinKrPCX
26 25 rexlimdvv KHLXBPAMXNP˙XqArAqrX=qjoinKrPCX
27 13 26 mpd KHLXBPAMXNP˙XPCX