Metamath Proof Explorer


Theorem loge

Description: The natural logarithm of _e . One case of Property 1b of Cohen p. 301. (Contributed by Steve Rodriguez, 25-Nov-2007)

Ref Expression
Assertion loge loge=1

Proof

Step Hyp Ref Expression
1 df-e e=e1
2 1 eqcomi e1=e
3 epr e+
4 1re 1
5 relogeftb e+1loge=1e1=e
6 3 4 5 mp2an loge=1e1=e
7 2 6 mpbir loge=1