Metamath Proof Explorer


Theorem logic1

Description: Distribution of implication over biconditional with replacement (deduction form). (Contributed by Zhi Wang, 30-Aug-2024)

Ref Expression
Hypotheses pm4.71da.1 φ ψ χ
logic1.2 φ ψ θ τ
Assertion logic1 φ ψ θ χ τ

Proof

Step Hyp Ref Expression
1 pm4.71da.1 φ ψ χ
2 logic1.2 φ ψ θ τ
3 2 pm5.74d φ ψ θ ψ τ
4 1 imbi1d φ ψ τ χ τ
5 3 4 bitrd φ ψ θ χ τ