Metamath Proof Explorer


Theorem logic1

Description: Distribution of implication over biconditional with replacement (deduction form). (Contributed by Zhi Wang, 30-Aug-2024)

Ref Expression
Hypotheses pm4.71da.1 ( 𝜑 → ( 𝜓𝜒 ) )
logic1.2 ( 𝜑 → ( 𝜓 → ( 𝜃𝜏 ) ) )
Assertion logic1 ( 𝜑 → ( ( 𝜓𝜃 ) ↔ ( 𝜒𝜏 ) ) )

Proof

Step Hyp Ref Expression
1 pm4.71da.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 logic1.2 ( 𝜑 → ( 𝜓 → ( 𝜃𝜏 ) ) )
3 2 pm5.74d ( 𝜑 → ( ( 𝜓𝜃 ) ↔ ( 𝜓𝜏 ) ) )
4 1 imbi1d ( 𝜑 → ( ( 𝜓𝜏 ) ↔ ( 𝜒𝜏 ) ) )
5 3 4 bitrd ( 𝜑 → ( ( 𝜓𝜃 ) ↔ ( 𝜒𝜏 ) ) )