Metamath Proof Explorer


Theorem logic1a

Description: Variant of logic1 . (Contributed by Zhi Wang, 30-Aug-2024)

Ref Expression
Hypotheses pm4.71da.1 ( 𝜑 → ( 𝜓𝜒 ) )
logic1a.2 ( ( 𝜑𝜓 ) → ( 𝜃𝜏 ) )
Assertion logic1a ( 𝜑 → ( ( 𝜓𝜃 ) ↔ ( 𝜒𝜏 ) ) )

Proof

Step Hyp Ref Expression
1 pm4.71da.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 logic1a.2 ( ( 𝜑𝜓 ) → ( 𝜃𝜏 ) )
3 2 ex ( 𝜑 → ( 𝜓 → ( 𝜃𝜏 ) ) )
4 1 3 logic1 ( 𝜑 → ( ( 𝜓𝜃 ) ↔ ( 𝜒𝜏 ) ) )