Metamath Proof Explorer


Theorem logic2

Description: Variant of logic1 . (Contributed by Zhi Wang, 30-Aug-2024)

Ref Expression
Hypotheses pm4.71da.1 ( 𝜑 → ( 𝜓𝜒 ) )
logic2.2 ( 𝜑 → ( ( 𝜓𝜒 ) → ( 𝜃𝜏 ) ) )
Assertion logic2 ( 𝜑 → ( ( 𝜓𝜃 ) ↔ ( 𝜒𝜏 ) ) )

Proof

Step Hyp Ref Expression
1 pm4.71da.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 logic2.2 ( 𝜑 → ( ( 𝜓𝜒 ) → ( 𝜃𝜏 ) ) )
3 1 pm4.71da ( 𝜑 → ( 𝜓 ↔ ( 𝜓𝜒 ) ) )
4 3 2 sylbid ( 𝜑 → ( 𝜓 → ( 𝜃𝜏 ) ) )
5 1 4 logic1 ( 𝜑 → ( ( 𝜓𝜃 ) ↔ ( 𝜒𝜏 ) ) )