Metamath Proof Explorer


Theorem logic2

Description: Variant of logic1 . (Contributed by Zhi Wang, 30-Aug-2024)

Ref Expression
Hypotheses pm4.71da.1
|- ( ph -> ( ps <-> ch ) )
logic2.2
|- ( ph -> ( ( ps /\ ch ) -> ( th <-> ta ) ) )
Assertion logic2
|- ( ph -> ( ( ps -> th ) <-> ( ch -> ta ) ) )

Proof

Step Hyp Ref Expression
1 pm4.71da.1
 |-  ( ph -> ( ps <-> ch ) )
2 logic2.2
 |-  ( ph -> ( ( ps /\ ch ) -> ( th <-> ta ) ) )
3 1 pm4.71da
 |-  ( ph -> ( ps <-> ( ps /\ ch ) ) )
4 3 2 sylbid
 |-  ( ph -> ( ps -> ( th <-> ta ) ) )
5 1 4 logic1
 |-  ( ph -> ( ( ps -> th ) <-> ( ch -> ta ) ) )