Metamath Proof Explorer


Theorem logic1

Description: Distribution of implication over biconditional with replacement (deduction form). (Contributed by Zhi Wang, 30-Aug-2024)

Ref Expression
Hypotheses pm4.71da.1
|- ( ph -> ( ps <-> ch ) )
logic1.2
|- ( ph -> ( ps -> ( th <-> ta ) ) )
Assertion logic1
|- ( ph -> ( ( ps -> th ) <-> ( ch -> ta ) ) )

Proof

Step Hyp Ref Expression
1 pm4.71da.1
 |-  ( ph -> ( ps <-> ch ) )
2 logic1.2
 |-  ( ph -> ( ps -> ( th <-> ta ) ) )
3 2 pm5.74d
 |-  ( ph -> ( ( ps -> th ) <-> ( ps -> ta ) ) )
4 1 imbi1d
 |-  ( ph -> ( ( ps -> ta ) <-> ( ch -> ta ) ) )
5 3 4 bitrd
 |-  ( ph -> ( ( ps -> th ) <-> ( ch -> ta ) ) )