Metamath Proof Explorer


Theorem logic1a

Description: Variant of logic1 . (Contributed by Zhi Wang, 30-Aug-2024)

Ref Expression
Hypotheses pm4.71da.1
|- ( ph -> ( ps <-> ch ) )
logic1a.2
|- ( ( ph /\ ps ) -> ( th <-> ta ) )
Assertion logic1a
|- ( ph -> ( ( ps -> th ) <-> ( ch -> ta ) ) )

Proof

Step Hyp Ref Expression
1 pm4.71da.1
 |-  ( ph -> ( ps <-> ch ) )
2 logic1a.2
 |-  ( ( ph /\ ps ) -> ( th <-> ta ) )
3 2 ex
 |-  ( ph -> ( ps -> ( th <-> ta ) ) )
4 1 3 logic1
 |-  ( ph -> ( ( ps -> th ) <-> ( ch -> ta ) ) )