Metamath Proof Explorer


Theorem logrncl

Description: Closure of the natural logarithm function. (Contributed by Paul Chapman, 21-Apr-2008)

Ref Expression
Assertion logrncl AA0logAranlog

Proof

Step Hyp Ref Expression
1 eldifsn A0AA0
2 logf1o log:01-1 ontoranlog
3 f1of log:01-1 ontoranloglog:0ranlog
4 2 3 ax-mp log:0ranlog
5 4 ffvelcdmi A0logAranlog
6 1 5 sylbir AA0logAranlog