Metamath Proof Explorer


Theorem logsqrt

Description: Logarithm of a square root. (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Assertion logsqrt A+logA=logA2

Proof

Step Hyp Ref Expression
1 relogcl A+logA
2 1 recnd A+logA
3 2cn 2
4 2ne0 20
5 divrec2 logA220logA2=12logA
6 3 4 5 mp3an23 logAlogA2=12logA
7 2 6 syl A+logA2=12logA
8 halfre 12
9 logcxp A+12logA12=12logA
10 8 9 mpan2 A+logA12=12logA
11 rpcn A+A
12 cxpsqrt AA12=A
13 11 12 syl A+A12=A
14 13 fveq2d A+logA12=logA
15 7 10 14 3eqtr2rd A+logA=logA2