Metamath Proof Explorer


Theorem lplni

Description: Condition implying a lattice plane. (Contributed by NM, 20-Jun-2012)

Ref Expression
Hypotheses lplnset.b B=BaseK
lplnset.c C=K
lplnset.n N=LLinesK
lplnset.p P=LPlanesK
Assertion lplni KDYBXNXCYYP

Proof

Step Hyp Ref Expression
1 lplnset.b B=BaseK
2 lplnset.c C=K
3 lplnset.n N=LLinesK
4 lplnset.p P=LPlanesK
5 simpl2 KDYBXNXCYYB
6 breq1 x=XxCYXCY
7 6 rspcev XNXCYxNxCY
8 7 3ad2antl3 KDYBXNXCYxNxCY
9 simpl1 KDYBXNXCYKD
10 1 2 3 4 islpln KDYPYBxNxCY
11 9 10 syl KDYBXNXCYYPYBxNxCY
12 5 8 11 mpbir2and KDYBXNXCYYP