Metamath Proof Explorer


Theorem lplni

Description: Condition implying a lattice plane. (Contributed by NM, 20-Jun-2012)

Ref Expression
Hypotheses lplnset.b 𝐵 = ( Base ‘ 𝐾 )
lplnset.c 𝐶 = ( ⋖ ‘ 𝐾 )
lplnset.n 𝑁 = ( LLines ‘ 𝐾 )
lplnset.p 𝑃 = ( LPlanes ‘ 𝐾 )
Assertion lplni ( ( ( 𝐾𝐷𝑌𝐵𝑋𝑁 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑌𝑃 )

Proof

Step Hyp Ref Expression
1 lplnset.b 𝐵 = ( Base ‘ 𝐾 )
2 lplnset.c 𝐶 = ( ⋖ ‘ 𝐾 )
3 lplnset.n 𝑁 = ( LLines ‘ 𝐾 )
4 lplnset.p 𝑃 = ( LPlanes ‘ 𝐾 )
5 simpl2 ( ( ( 𝐾𝐷𝑌𝐵𝑋𝑁 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑌𝐵 )
6 breq1 ( 𝑥 = 𝑋 → ( 𝑥 𝐶 𝑌𝑋 𝐶 𝑌 ) )
7 6 rspcev ( ( 𝑋𝑁𝑋 𝐶 𝑌 ) → ∃ 𝑥𝑁 𝑥 𝐶 𝑌 )
8 7 3ad2antl3 ( ( ( 𝐾𝐷𝑌𝐵𝑋𝑁 ) ∧ 𝑋 𝐶 𝑌 ) → ∃ 𝑥𝑁 𝑥 𝐶 𝑌 )
9 simpl1 ( ( ( 𝐾𝐷𝑌𝐵𝑋𝑁 ) ∧ 𝑋 𝐶 𝑌 ) → 𝐾𝐷 )
10 1 2 3 4 islpln ( 𝐾𝐷 → ( 𝑌𝑃 ↔ ( 𝑌𝐵 ∧ ∃ 𝑥𝑁 𝑥 𝐶 𝑌 ) ) )
11 9 10 syl ( ( ( 𝐾𝐷𝑌𝐵𝑋𝑁 ) ∧ 𝑋 𝐶 𝑌 ) → ( 𝑌𝑃 ↔ ( 𝑌𝐵 ∧ ∃ 𝑥𝑁 𝑥 𝐶 𝑌 ) ) )
12 5 8 11 mpbir2and ( ( ( 𝐾𝐷𝑌𝐵𝑋𝑁 ) ∧ 𝑋 𝐶 𝑌 ) → 𝑌𝑃 )