Metamath Proof Explorer


Theorem lplnneat

Description: No lattice plane is an atom. (Contributed by NM, 15-Jul-2012)

Ref Expression
Hypotheses lplnneat.a A=AtomsK
lplnneat.p P=LPlanesK
Assertion lplnneat KHLXP¬XA

Proof

Step Hyp Ref Expression
1 lplnneat.a A=AtomsK
2 lplnneat.p P=LPlanesK
3 hllat KHLKLat
4 eqid BaseK=BaseK
5 4 2 lplnbase XPXBaseK
6 eqid K=K
7 4 6 latref KLatXBaseKXKX
8 3 5 7 syl2an KHLXPXKX
9 6 1 2 lplnnleat KHLXPXA¬XKX
10 9 3expia KHLXPXA¬XKX
11 8 10 mt2d KHLXP¬XA