Metamath Proof Explorer


Theorem lplnriaN

Description: Property of a lattice plane expressed as the join of 3 atoms. (Contributed by NM, 30-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses islpln2a.l ˙=K
islpln2a.j ˙=joinK
islpln2a.a A=AtomsK
islpln2a.p P=LPlanesK
islpln2a.y Y=Q˙R˙S
Assertion lplnriaN KHLQARASAYP¬Q˙R˙S

Proof

Step Hyp Ref Expression
1 islpln2a.l ˙=K
2 islpln2a.j ˙=joinK
3 islpln2a.a A=AtomsK
4 islpln2a.p P=LPlanesK
5 islpln2a.y Y=Q˙R˙S
6 1 2 3 4 5 islpln2ah KHLQARASAYPQR¬S˙Q˙R
7 1 2 3 hlatcon3 KHLQARASAQR¬S˙Q˙R¬Q˙R˙S
8 7 3expia KHLQARASAQR¬S˙Q˙R¬Q˙R˙S
9 6 8 sylbid KHLQARASAYP¬Q˙R˙S
10 9 3impia KHLQARASAYP¬Q˙R˙S