Metamath Proof Explorer


Theorem lspindp4

Description: (Partial) independence of 3 vectors is preserved by vector sum. (Contributed by NM, 26-Apr-2015)

Ref Expression
Hypotheses lspindp3.v V=BaseW
lspindp3.p +˙=+W
lspindp4.n N=LSpanW
lspindp4.w φWLMod
lspindp4.x φXV
lspindp4.y φYV
lspindp4.z φZV
lspindp4.e φ¬ZNXY
Assertion lspindp4 φ¬ZNXX+˙Y

Proof

Step Hyp Ref Expression
1 lspindp3.v V=BaseW
2 lspindp3.p +˙=+W
3 lspindp4.n N=LSpanW
4 lspindp4.w φWLMod
5 lspindp4.x φXV
6 lspindp4.y φYV
7 lspindp4.z φZV
8 lspindp4.e φ¬ZNXY
9 1 2 3 4 5 6 lspprabs φNXX+˙Y=NXY
10 8 9 neleqtrrd φ¬ZNXX+˙Y