Metamath Proof Explorer


Theorem lspprabs

Description: Absorption of vector sum into span of pair. (Contributed by NM, 27-Apr-2015)

Ref Expression
Hypotheses lspprabs.v V=BaseW
lspprabs.p +˙=+W
lspprabs.n N=LSpanW
lspprabs.w φWLMod
lspprabs.x φXV
lspprabs.y φYV
Assertion lspprabs φNXX+˙Y=NXY

Proof

Step Hyp Ref Expression
1 lspprabs.v V=BaseW
2 lspprabs.p +˙=+W
3 lspprabs.n N=LSpanW
4 lspprabs.w φWLMod
5 lspprabs.x φXV
6 lspprabs.y φYV
7 eqid LSubSpW=LSubSpW
8 7 lsssssubg WLModLSubSpWSubGrpW
9 4 8 syl φLSubSpWSubGrpW
10 1 7 3 lspsncl WLModXVNXLSubSpW
11 4 5 10 syl2anc φNXLSubSpW
12 9 11 sseldd φNXSubGrpW
13 1 7 3 lspsncl WLModYVNYLSubSpW
14 4 6 13 syl2anc φNYLSubSpW
15 9 14 sseldd φNYSubGrpW
16 eqid LSSumW=LSSumW
17 16 lsmub1 NXSubGrpWNYSubGrpWNXNXLSSumWNY
18 12 15 17 syl2anc φNXNXLSSumWNY
19 7 16 lsmcl WLModNXLSubSpWNYLSubSpWNXLSSumWNYLSubSpW
20 4 11 14 19 syl3anc φNXLSSumWNYLSubSpW
21 1 3 lspsnid WLModXVXNX
22 4 5 21 syl2anc φXNX
23 1 3 lspsnid WLModYVYNY
24 4 6 23 syl2anc φYNY
25 2 16 lsmelvali NXSubGrpWNYSubGrpWXNXYNYX+˙YNXLSSumWNY
26 12 15 22 24 25 syl22anc φX+˙YNXLSSumWNY
27 7 3 4 20 26 lspsnel5a φNX+˙YNXLSSumWNY
28 1 2 lmodvacl WLModXVYVX+˙YV
29 4 5 6 28 syl3anc φX+˙YV
30 1 7 3 lspsncl WLModX+˙YVNX+˙YLSubSpW
31 4 29 30 syl2anc φNX+˙YLSubSpW
32 9 31 sseldd φNX+˙YSubGrpW
33 9 20 sseldd φNXLSSumWNYSubGrpW
34 16 lsmlub NXSubGrpWNX+˙YSubGrpWNXLSSumWNYSubGrpWNXNXLSSumWNYNX+˙YNXLSSumWNYNXLSSumWNX+˙YNXLSSumWNY
35 12 32 33 34 syl3anc φNXNXLSSumWNYNX+˙YNXLSSumWNYNXLSSumWNX+˙YNXLSSumWNY
36 18 27 35 mpbi2and φNXLSSumWNX+˙YNXLSSumWNY
37 16 lsmub1 NXSubGrpWNX+˙YSubGrpWNXNXLSSumWNX+˙Y
38 12 32 37 syl2anc φNXNXLSSumWNX+˙Y
39 7 16 lsmcl WLModNXLSubSpWNX+˙YLSubSpWNXLSSumWNX+˙YLSubSpW
40 4 11 31 39 syl3anc φNXLSSumWNX+˙YLSubSpW
41 eqid -W=-W
42 1 3 lspsnid WLModX+˙YVX+˙YNX+˙Y
43 4 29 42 syl2anc φX+˙YNX+˙Y
44 41 16 32 12 43 22 lsmelvalmi φX+˙Y-WXNX+˙YLSSumWNX
45 lmodabl WLModWAbel
46 4 45 syl φWAbel
47 1 2 41 ablpncan2 WAbelXVYVX+˙Y-WX=Y
48 46 5 6 47 syl3anc φX+˙Y-WX=Y
49 16 lsmcom WAbelNX+˙YSubGrpWNXSubGrpWNX+˙YLSSumWNX=NXLSSumWNX+˙Y
50 46 32 12 49 syl3anc φNX+˙YLSSumWNX=NXLSSumWNX+˙Y
51 44 48 50 3eltr3d φYNXLSSumWNX+˙Y
52 7 3 4 40 51 lspsnel5a φNYNXLSSumWNX+˙Y
53 9 40 sseldd φNXLSSumWNX+˙YSubGrpW
54 16 lsmlub NXSubGrpWNYSubGrpWNXLSSumWNX+˙YSubGrpWNXNXLSSumWNX+˙YNYNXLSSumWNX+˙YNXLSSumWNYNXLSSumWNX+˙Y
55 12 15 53 54 syl3anc φNXNXLSSumWNX+˙YNYNXLSSumWNX+˙YNXLSSumWNYNXLSSumWNX+˙Y
56 38 52 55 mpbi2and φNXLSSumWNYNXLSSumWNX+˙Y
57 36 56 eqssd φNXLSSumWNX+˙Y=NXLSSumWNY
58 1 3 16 4 5 29 lsmpr φNXX+˙Y=NXLSSumWNX+˙Y
59 1 3 16 4 5 6 lsmpr φNXY=NXLSSumWNY
60 57 58 59 3eqtr4d φNXX+˙Y=NXY