Metamath Proof Explorer


Theorem ablpncan2

Description: Cancellation law for subtraction in an Abelian group. (Contributed by NM, 2-Oct-2014)

Ref Expression
Hypotheses ablsubadd.b B=BaseG
ablsubadd.p +˙=+G
ablsubadd.m -˙=-G
Assertion ablpncan2 GAbelXBYBX+˙Y-˙X=Y

Proof

Step Hyp Ref Expression
1 ablsubadd.b B=BaseG
2 ablsubadd.p +˙=+G
3 ablsubadd.m -˙=-G
4 simp1 GAbelXBYBGAbel
5 simp2 GAbelXBYBXB
6 simp3 GAbelXBYBYB
7 1 2 3 abladdsub GAbelXBYBXBX+˙Y-˙X=X-˙X+˙Y
8 4 5 6 5 7 syl13anc GAbelXBYBX+˙Y-˙X=X-˙X+˙Y
9 ablgrp GAbelGGrp
10 4 9 syl GAbelXBYBGGrp
11 eqid 0G=0G
12 1 11 3 grpsubid GGrpXBX-˙X=0G
13 10 5 12 syl2anc GAbelXBYBX-˙X=0G
14 13 oveq1d GAbelXBYBX-˙X+˙Y=0G+˙Y
15 1 2 11 grplid GGrpYB0G+˙Y=Y
16 10 6 15 syl2anc GAbelXBYB0G+˙Y=Y
17 8 14 16 3eqtrd GAbelXBYBX+˙Y-˙X=Y