Metamath Proof Explorer


Theorem lspprid2

Description: A member of a pair of vectors belongs to their span. (Contributed by NM, 14-May-2015)

Ref Expression
Hypotheses lspprid.v V=BaseW
lspprid.n N=LSpanW
lspprid.w φWLMod
lspprid.x φXV
lspprid.y φYV
Assertion lspprid2 φYNXY

Proof

Step Hyp Ref Expression
1 lspprid.v V=BaseW
2 lspprid.n N=LSpanW
3 lspprid.w φWLMod
4 lspprid.x φXV
5 lspprid.y φYV
6 1 2 3 5 4 lspprid1 φYNYX
7 prcom YX=XY
8 7 fveq2i NYX=NXY
9 6 8 eleqtrdi φYNXY