Metamath Proof Explorer


Theorem lspsnid

Description: A vector belongs to the span of its singleton. ( spansnid analog.) (Contributed by NM, 9-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspsnid.v V=BaseW
lspsnid.n N=LSpanW
Assertion lspsnid WLModXVXNX

Proof

Step Hyp Ref Expression
1 lspsnid.v V=BaseW
2 lspsnid.n N=LSpanW
3 snssi XVXV
4 1 2 lspssid WLModXVXNX
5 3 4 sylan2 WLModXVXNX
6 snssg XVXNXXNX
7 6 adantl WLModXVXNXXNX
8 5 7 mpbird WLModXVXNX