Metamath Proof Explorer


Theorem lssn0

Description: A subspace is not empty. (Contributed by NM, 12-Jan-2014) (Revised by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypothesis lssn0.s S=LSubSpW
Assertion lssn0 USU

Proof

Step Hyp Ref Expression
1 lssn0.s S=LSubSpW
2 eqid ScalarW=ScalarW
3 eqid BaseScalarW=BaseScalarW
4 eqid BaseW=BaseW
5 eqid +W=+W
6 eqid W=W
7 2 3 4 5 6 1 islss USUBaseWUxBaseScalarWaUbUxWa+WbU
8 7 simp2bi USU