Metamath Proof Explorer


Theorem ltadd1d

Description: Addition to both sides of 'less than'. Theorem I.18 of Apostol p. 20. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φA
ltnegd.2 φB
ltadd1d.3 φC
Assertion ltadd1d φA<BA+C<B+C

Proof

Step Hyp Ref Expression
1 leidd.1 φA
2 ltnegd.2 φB
3 ltadd1d.3 φC
4 ltadd1 ABCA<BA+C<B+C
5 1 2 3 4 syl3anc φA<BA+C<B+C